

Research & Innovation priorities in Sustainable Chemistry SusChem ETP

Dr. Vivi Filippousi

SusChem ETP manager, Cefic Innovation manager

Asamblea General SusChem – España 'Química y la Energía' – 07.10.2020

suschem.org

1. SusChem ETP & the National Technology Platforms (NTPs)

SusChem ETP – a European Technology Platform

SusChem ETP focus: Sustainable Chemistry and Industrial Biotechnology

- 1. Open multi-stakeholders forum
- Mobilizing and bringing together stakeholders from the large Industry, SMEs, startups, and Academia (Universities & RTOs)
- Promote knowledge transfer across the EU

- Tech 'radar': Driving innovation, defining priorities/ solutions to global challenges and EU priorities
- RD&I agendas to be supported by both private and public funding (EU and national level)

Founded in 2004 6 founding members: Cefic, DECHEMA, RSC, EuropaBio, ESAB, GDCh_

SusChem NTPs network A network across Europe - Bridging National and EU priorities

• 17 SusChem NTPs (National Technology Platforms)

śċ

• SusChem ES: long-standing and high-value stakeholder

** links, especially with SMEs and Academia at national level *** National Contact Points (NCPs)

SusChem& the contribution to Sustainable Chemistry

Holistic view: Sustainable Chemistry & Industrial Biotech --- SusChem pillars ---

Innovation Ecosystem – Sustainable Chemistry

- Technology-focused working groups (white papers)
- SIRA development (advisory role on technology priorities/ EU priorities)
- EC consultations relevant to innovation and funding in Sustainable Chemistry
- Visionary projects (e.g. F³ factory)
- Brokerage events (EU projects consortia, fostering collaborative initiatives)
- Stakeholder events (public consultation & connecting stakeholders)

With input from the NTPs on all the above

2. SusChem SIRA towards 2030:

Reviewing RD& I priorities for the chemical sector

Launching the current SusChem SIRA (towards 2030)

susснем

Sustainable chemistry: Technologies for a better future of Europe

🔰 @SusChem

www.suschem.org

Strategic Innovation and Research Agenda

Innovation Priorities for EU and Global Challenges

Publication link

SIRA: a multi-stakeholders collaboration effort

- > 100 experts/ SusChem stakeholders
- Academia, RTOs, SMEs, associations, large industry
- SusChem Board

ŝ

- SusChem NTPs
- Core project team (Cefic)

Sc < SusChem overarching & interconnected priorities > Technologies for a better Future of Europe

(*Strong links with energy efficiency)

New SusChem SIRA – core structure / R& I priorities śĊ

'Innovation priorities for EU and Global challenges'

Advanced materials as solutions for other industrial value chains

Advanced Processes for energy transition & circular economy

Digitalisation Transforms the Chemical Industry Rapidly Across its Entire Value Chain

SUSCHEM ENABLING DIGITAL TECHNOLOGIES DIGITAL INNOVATIONS FOR THE CHEMICAL INDUSTRY

SUSCHEM ENABLING DIGITAL TECHNOLOGIES DIGITAL INNOVATIONS FOR THE CHEMICAL INDUSTRY

*Note: Illustration from SusChem SIRA; Enabling Digital technologies - Chapter 4

3. Energy efficiency focus

Sustainable Production of Renewable Electricity

Thin film& organic photovoltaics. (robustness and efficiency)

Materials for wind turbines (circularity-by-design)

Multi-junction photovoltaic materials. (performance and efficiency at a larger range of wavelengths)

Laboratory 4.0 – Digital R&D (materials simulation, laboratory automation and high throughput screening)

TRL > 5 target – demo actions& beyond:

- Enhanced efficiency solutions: existing global thin film PV market & new markets.
- Materials for multi-junction PV cells: high performance, capturing energy in wider ranges of wavelength of the incident light.
- Circularity-by-design strategies* for wind turbine materials (chemical & mechanical recycling) maintain processing properties, mechanical strength, chemical resistance.* By 2050, ~40 million tonnes of waste material will become 'available' by the global wind industry.

Composites & cellular materials

Materials for energy storage

Laboratory 4.0 – Digital R&D

Renewable Energy storage

Materials for energy storage

ŚĊ

(lithium-ion batteries, redox flow batteries, metal-air batteries, organic batteries, materials for large capacity thermo-solar and heat energy storage)

Power-to-chemicals (syngas, methanol, fuels, methane, ammonia)

Hydrogen production w low carbon footprint (Alkaline water electrolysis (AWE), Polymer Electrolyte Membrane water electrolysis (PEM), Solid Oxide Electrolysis (SOE), Methane pyrolysis, water photolysis.

[Large scale demonstration for the already technologically mature technologies]

- Shift to low- and zero-emission vehicles, incl. electric vehicles. Batteries for clean mobility and energy systems (EU Action plan for batteries).
- H₂ (global production) : 55% ammonia production (fertilizers), 25% fossil fuels refineries, 10% methanol production (polymers). Currently the production of H₂ is responsible for 830 million tons of CO₂/year (global scale).
- Power-to-chemicals to contribute in the introduction of renewable electricity in the chemical industry.

śĊ

Increased Energy efficiency of chemical process technologies. [overarching goal].

New reactor& process design concepts

Catalysis [enabling CO₂ valorization via catalysis]

Coordination & management of connected processes

Cognitive plants (real-time process simulation, monitoring, control and optimization)

Power-to-chemicals & Power-to-heat

Hydrogen production with low carbon footprint

- Tolerant and intensified reactors and processes (feedstock variability & energy fluctuation).
- Electrochemical and photo-electrochemical reactors (including considerations for recovering valuable materials/ e.g. catalysts).
- New reactor and process design utilizing non-conventional energy forms (plasma, ultrasound, microwave, ...).

SC Energy efficient water treatment.

Process Analytical Technologies (PAT)

Advanced (Big-Data) analytics and AI

Coordination & management of connected processes

Cognitive plants (real-time process simulation, monitoring, control and optimization)

Membranes for separation in diluted conditions.

- Water reuse& recycling 'zero liquid discharge'
- Alternative water sources and water symbiosis
- Decentralized/smaller treatment systems
- PAT water operations and treatment. PAT for continuous flow reactors and modular processes
- Water data management (advanced data analytics & AI)

śċ

Digital technologies – 'business level' contributions

Industrial symbiosis via better valorization of energy streams

Industrial symbiosis - better valorization of energy	
streams	

Supporting decision making

- Key enabling digital technologies: ... data sharing platforms& data security, coordination and management of connected processes, advanced (big-) data analytics and AI
- Horizontal topics contribution: advancing on education & skills capacity in Europe, Sustainability assessment innovation

Thank you. Contact: <u>vfi@cefic.be</u> or <u>suschem@suschem.org</u>

4. Back-up slides

SUSCHEM – Asamblea General SusChem – España

SC < Low Carbon Economy> Focus areas – building on RD& I actions

- Sustainable production of renewable electricity.
- Renewable energy storage.
- Energy efficiency in transport and buildings.
- Increased Energy efficiency of chemical process technologies. [overarching goal]
- Electrification of chemical processes and use of renewable resources.
- Energy efficient water treatment.
- Industrial symbiosis via better valorization of energy streams.
- Alternative Business models (sectors coupling).
- Supporting decision making.

4. ADVANCED MATERIALS – TECHNOLOGY PRIORITIES outline

٠

٠

٠

٠

٠

>Composites and cellular materials Enabling functionalities in novel products or enhancements of existing products. >3D-printable materials new market applications; >Bio-based chemicals and materials new value chains; >Additives successful integration of alternative carbon feedstock; >Biocompatible and smart materials >Materials for Electronics circular economy transition: circularity-by-design; >Membranes synergies with innovation in advanced processes and digital technologies. >Materials for energy storage >Coatings and Aerogels

4. ADVANCED PROCESSES – TECHNOLOGY PRIORITIES outline

- Improving: energy and resource efficiency of existing process technologies
- Disruptive process technologies to:
 - Increase the share of renewable energy,
 - o Improve the utilization of alternative carbon sources
- broader contribution to circular economy: recovery and valorization of critical raw materials and water.
- <u>Crucial synergies with digital technologies.</u>

>New reactor and process design concepts;
>Modular production;
>Advanced separation process technologies;
>New reactor and process design utilizing non-conventional energy forms;
>Electrochemical, Electrocatalytic and Photo-electrocatalytic Processes;
>Power-to-Heat;
>Hydrogen production with low-carbon footprint;
>Power-to-chemicals;
>Catalysis;
>Advanced Processes: Industrial Biotechnology;
> Waste valorization processes;
> Process technologies for advanced water management;

4. ENABLING DIGITAL TECHNOLOGIES – TECHNOLOGY PRIORITIES outline

- Enabling further innovation Transformational impact across the chemical sector co-development and/or implementation;
- in Advanced Materials and Advanced Processes;
- Covering the entire production life cycle: R&D, production operations, supply chain and sales processes;
- Key on operational excellence, safety and sustainability improvements [incl. circular supply chains & industrial symbiosis].

> Laboratory 4.0 - Digital R& D;
> Process Analytical technologies (PAT);
> Cognitive plants: (real-time) process simulation, monitoring, control and optimization;
> Advanced (big-) data analytics and Artificial Intelligence;
> Predictive maintenance;
> Digital support of operators and human-process interfaces;
> Data sharing platforms and data security;
> Coordination and management of connected processes at different levels;
> Distributed ledger technologies.