

Sun C Chem

PhotoElectroCatalytic Device for Sun-Driven CO₂ conversion into Green Chemicals

Miriam Diaz de los Bernardos, EURECAT miriam.diaz@eurecat.org

06/10/2021

SunCoChem general overview

Development of a photoelectrocatalytic device for solar-driven ${\rm CO_2}$ conversion into green chemicals

- European project funded under the topic: CE-NMBP-25-2019 – Photocatalytic synthesis (RIA)
- 4 years duration, from 1/05/2020 to 30/04/2024
- Budget: 6,7 M€, of which 6,6M€ funded by the EC
- 14 partners from 8 different European countries
- Coordinated by Eurecat, RTO
- Grant agreement ID: 862192

SunCochem Consortium

14 partners from 8 European countries

6

1

3

1

Research institutions

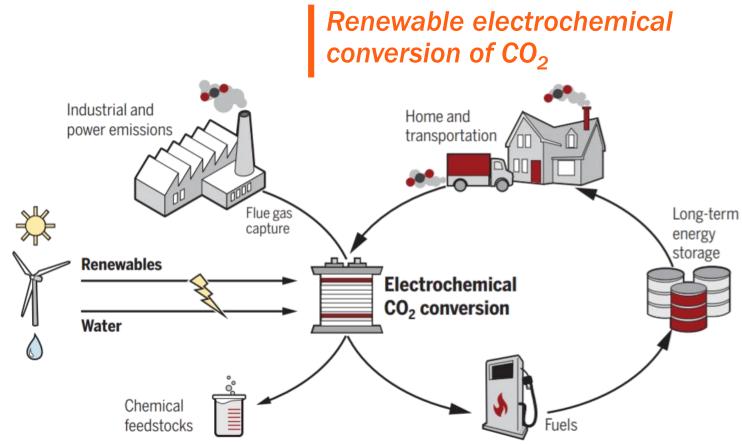
R&D SMEs

Standardisation body

Chemical industries

EU International Cooperation partner

SunCochem The European Chemical Industry

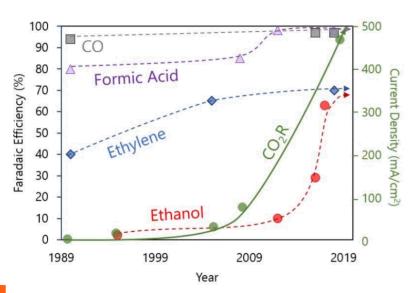


Transition towards low-emission energy technologies

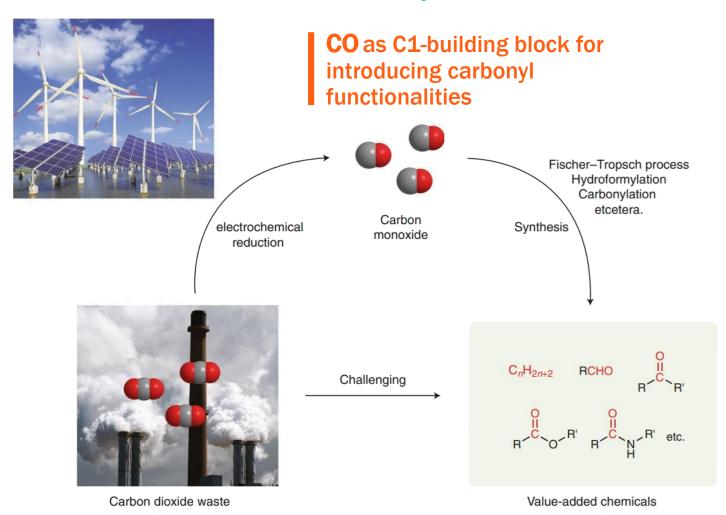
30 gigatons of CO₂ emitted yearly

95%
Chemicals
based on fossil
fuels

The Chemical Industry is the third larger greenhouse gas emitter in Europe, with over 30 GtCO₂ yearly.

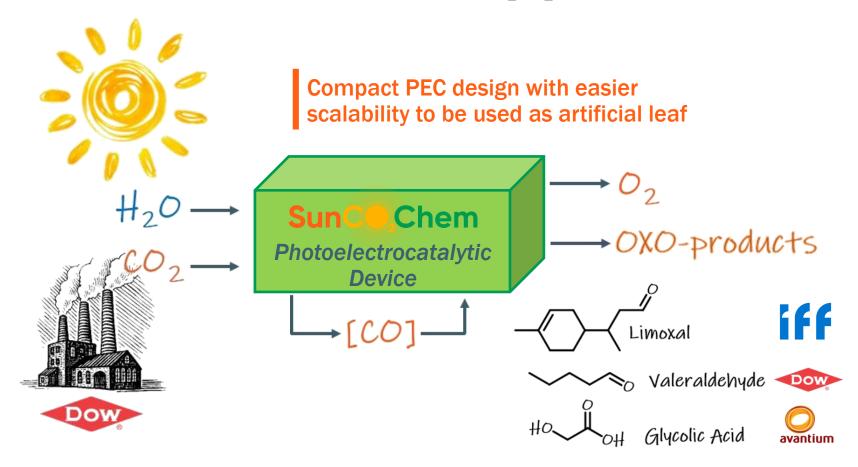


Images from: De Luna et al., Science, 2019, 364, eaav3506



Sequential pathways to higher chemicals via CO electrosynthesis

Higher CO selectivity and conversion efficiencies in comparison with other products



SunCe,Chem Concept

SUN-driven production of energy and high-value chemicals

• The project develops a photoelectrocatalytic tandem reactor (TPER) to manufacture valuable chemical oxo-products from renewable energies based on CO₂, H₂O and solar energy.

SunConchem Objective

Three sustainable oxo-products produced from CO₂

 Oxo-products produced from the use of CO₂ as a renewable carbon source, in comparison to actual routes based on fossil fuels.

GLYCOLIC ACID

Hydroformylation of formaldehyde

Building block applied in dying and tanning, flavoring preservative and emulsion additive.

VALERALDHEYDE

Hydroformylation of Butene (DOW waste by-product)

Building block applied as food flavouring, in resin and rubber products

LIMOXAL TM

Hydroformylation of limonene

Building block applied as a perfuming agent, in personal care and house cleaning products

SunConchem TPEC Device

TPER COMPONENTS

- Hybrid photocathode for CO₂ conversion to oxo-products
- Photoanode for water oxidation
- Transparent bipolar membrane (TBM)
- CO₂ capture and concentration stage

Three-chamber configuration:

ANODIC CHAMBER

Water oxidation to O₂

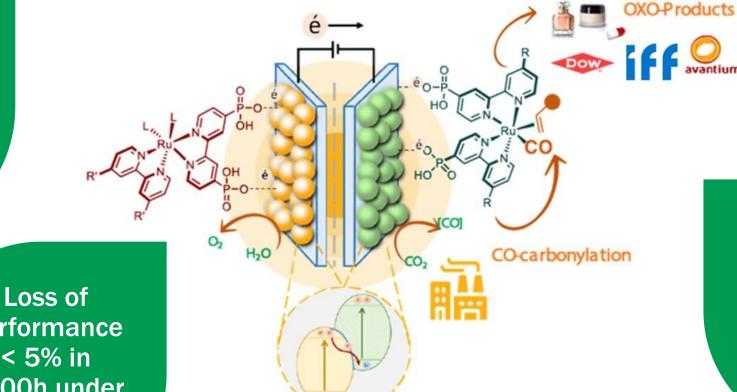
CATHODIC CHAMBER

Photo- and *non*-photoassisted coupled reactions

- Selective PEC CO₂ reduction to CO
- CO-hydroformylation of OXO-products lonic Liquids electrolytes

MEA via a transparent bipolar membrane Low-cost PV solar cells to boost internal photo-voltage

FLUE GAS & CO₂ CAPTURE CHAMBER


- CO₂ capture from flue gas stream with an asymmetric polysulfone membrane
- CO₂ concentration in lonic Liquids

Sun Concern Technical Requirements

Overall sunlight to chemical conversion **CO** efficiency > 10%

Z-Sheme Design

< 50% CO₂ emissions comparable to actual route from fossil fuels

performance < 5% in 1000h under operational conditions

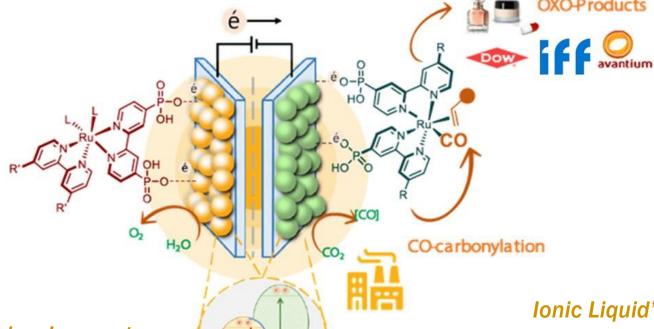

Sun Co, Chem Technical Challenges

Photo-electrodes development

Multi-heterojunction photoelectrodes for Z-scheme mimicking:

- Metal oxide nanoparticles
- Molecular organometallic chromophores
- Molecular catalysts for water oxidation, CO2 reduction and hydroformylation

Z-Sheme Design

Transparent bipolar membrane development

Bipolar Membrane-electrode assembly to maximize catalyst performance:

- Constant pH and ionic gradients at both compartments
- Use of different electrolytes

lonic Liquid's development

- **Better physical sorption**
- Lower viscosity
- Higher CO₂ and organic reagent solubility
- Higher electrochemical stability window

Sun C Chem

PhotoElectroCatalytic Device for Sun-Driven CO₂ conversion into Green Chemicals

This project has received funding from the EU's Horizon 2020 research and innovation programme under grant agreement No 862192.